Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements

نویسندگان

  • Patrick Alken
  • Stefan Maus
چکیده

[1] The equatorial electrojet (EEJ) is an eastward electric current on the day-side, flowing in a narrow band along the dip equator in the ionospheric E region. Recent magnetic observations from the CHAMP, Ørsted, and SAC-C satellites, comprising more than 95,000 dip equator crossings from 1999 to 2006, have provided an unprecedented longitudinal coverage of the EEJ magnetic signature. We have used these data to construct an empirical model of the EEJ current climatological mean and day to day variability as a function of longitude, local time, season, and solar flux. Our model has been successfully verified against vertical drift data from the JULIA radar at Jicamarca. We have also used the EEJ observations to estimate the self-correlation of the EEJ, confirming short longitudinal correlation lengths of 15 and finding a temporal correlation length of 2.4 h. Our model’s predictions of the eastward electric field and its standard deviation may provide useful input to various kinds of ionospheric simulations. Coefficients and software are available online at http://models.geomag.us/EEJ.html and http://www.earthref.org.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet

[1] The climatological model of the equatorial electrojet, EEJM-1, derived from Ørsted, CHAMP and SAC-C satellite measurements provides the opportunity to investigate the longitudinal variation of the current strength in detail. Special emphasis is put in this study on the effect of nonmigrating tides. We have found that the influence of the diurnal eastward-propagating mode with wavenumber-3, ...

متن کامل

Evidence for short spatial correlation lengths of the noontime equatorial electrojet inferred from a comparison of satellite and ground magnetic data

[1] The current density of the noontime equatorial electrojet (EEJ) as determined from CHAMP data is highly variable between successive passes of the satellite, which are separated by 23 in distance and 93 min in time. An open question is to which extent this variability is caused by temporal or spatial variations in the ionosphere. Another important question is the connection between EEJ and g...

متن کامل

Electric fields and zonal winds in the equatorial ionosphere inferred from CHAMP satellite magnetic measurements

[1] The Equatorial Electrojet (EEJ) produces a strong magnetic signal in measurements of the low-orbiting CHAMP satellite. Six years of data with more than 30,000 dayside equator crossings provide a unique data basis to study this current system. In addition to scalar measurements used in previous studies, we have also inverted vector magnetic field measurements to gain accurate meridional prof...

متن کامل

Geomagnetic main field modeling with DMSP

The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Ørsted, and SAC-C. With the completion of the CHAMP mission in 2010, there has ...

متن کامل

Longitudinal variation of the E-region electric fields caused by atmospheric tides

[1] Polarization electric fields created by the Eand Fregion dynamos cause the uplift of F-region plasma. The subsequent redistribution of that plasma along the magnetic field lines creates the equatorial ionospheric anomaly (EIA). Observations of the post-sunset EIA made by the IMAGE and TIMED satellites are compared here with CHAMP, Ørsted and SAC-C observations of the noontime equatorial ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007